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CUTTING PLANES FROM CONDITIONAL BOUNDS:

A NEW APPROACH TO SET COVERING

by
Egon Balas
1. Introduction
We consider the set covering problem

(sC) min {ex ‘ Ax > e, xj =0orl, jeN}

where A = (aij) is mxn, e e R*, e = (1,...,1), ¢ ¢ R", and a5 € fo, 1},
L ieM=1{1,...,m}, j eN=1{1,...,n}. We will denote by al and 8 the
3
1 i-th row and j-th column of A, respectively. Without loss of generality,
k

we assume that cj > 0, Vj e N. Using established terminology, we call a
vector x satisfying the constraints of (SC) a cover, and the set of indices

j such that x, = 1, the support of the cover. A cover is called prime if

j

L no proper subset of its support defines a cover.

b This problem, and its equality-constraired counterpart, the set

partitioning problem, are useful mathematical models for a great variety

of scheduling and other important real world problems, like crew scheduling,

truck delivery, tanker routing, information retrieval, fault detection, b
stock cutting, offshore drilling platform location, etc., and a literature

of considerable size exists on solution methods for these models (see [9]

for a survey of set covering and set partitioning; [7] for a computational

study and comparison of several solution techniques: and [4] for a more

recent survey of set partitioning, which also contains a bibliography of




applications of both models).

In this paper we propose a new approach to set covering, based on

the idea of conditional bounds. In section 2 we introduce this concept
for arbitrary mixed integer programs, and show how it can be used to
derive valid disjunctions. The latter in turn can be used either to
partition the feasible set in the framework of a branch and bound
approach, or to derive a family of valid cutting planes. In case

of a set covering problem, the cutting planes derived from conditional

bounds are themselves of the set covering type. These cuts are discussed

in section 3, where the Bellmore-Ratliff inequalities generated from
involutory bases are shown to be a special case of the larger family of
A inequalities defined in this paper. In section 4 we examine some basic
properties of our cutting planes. The family of cuts from conditional
bounds is rather large, and in section 5 we discuss a procedure for

generating ''strong' members of the family. Section 6 outlines a class of

algorithms based on the cutting planes introduced in this paper, and using
heuristics as well as subgradient optimization rather than the simplex
method. Several versions of this approach were implemented and tested

- computationally in a joint study of Andrew Ho and the author, that is
summarized in a companion paper {2]. The algorithm that emerged from

this testing seems capable of solving larger problems in less time and
more reliably than earlier methods.

The approach discussed here was first circulated under [1].

2. Disjunctions from Conditional Bounds

The central idea of our approach is to derive valid inequalities for
the set covering problem £rom conditional bounds. Since this concept is
valid and useful for arbitrary mixed integer programs, we will introduce

| it in thts more general context.




R R B

In solving pure or mixed integer programs by branch and bound, if
the feasible set is tightly constrained, it is sometimes possible to derive
disjunctions stronger than the usual dichotomy on a single variable. On the
other hand, the feasible set of any integer program becomes more or less tightly
constrained after the discovery of a ''good" solution (in particular, of an
optimal solution), provided that one restricts it to those solutions better
than the current best. Such a '"tightly constrained" state of the feasible set
can often be expressed in the form of an inequality mx < o with m > 0 and
m > 0, as will be discussed later on. The smaller "o relative to the other
coefficients ﬂj, the tighter the inequality. Whenever such an inequality
is at hand, the following result can be used to generate a valid disjunction.
Here we denote disjunction by the symbol v, and the meaning of

k

iZIAi = A1 Vv A2 Vi o Ak

is that at least one of the conditions Al""’Ak must hold.

Theorem 1. Let meR, m eR., N = {l,...,n}, and Q SN, i = 1,...,p,

1 < p £n. There exists veRi such that

(n L v, g, jei
tiyey * ¢
and
@ :
Vo S
i=1 i o

if and only if every integer xcR: that satisfies mx < m also satisfies

the disjunction

p
(3) V(x, =0, §eQ,).
=1 I %

Proof. Let G = (sij) be the pXn matrix defined by

{ 1 Jch
0 ch\Qi

(4) 8U L) A N

and let e = (1,..,1) have p components. From (1) and (2), G contains as a

submatrix the identity matrix of order p, whose columns are j(i), i=1,...,p.

T N L . s |
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Note that, by construction of the sets Qi’ sj > Sj(i)

>0 for jeQi,
i=1,..., p, and thus on all branches except the one corresponding to i = 1,
the lower bound ub given by the dual solution associated with the reduced

cost vector s, can be strengthened immediately after branching, by associating

with each inequality

5 xj =21
Jer

the positive multiplier xj(k)'

the lower bound ub can be replaced right after branching by ub + sj(1)+"'+sj(i 1)°

The above described branching rule, while often considerably stronger

In other words, on the i-th branch (i > 1)

than the traditional one, can occasionally be a lot weaker. Therefore, the
best way of using it is to judiciously combine it with other branching rules,
according to criteria that make sure it is only used at such nodes of the
search tree where it can be expected to perform relatively well. It is in
this fashion that disjunctions of the type (3) are being successfully used
for branching in our set covering algorithm that also uses them to generate
cutting planes (see the companion paper [2]), and in a restricted
Lagrangean algorithm for the traveling salesman problem [7].

Next we turn to the other use of disjunctions of type (3), namely
for generating cutting planes. In the case of the set covering problem,
these cutting planes turn out to be of the same type as the original

constraints.

3. The Cutting Planes

From now on, we address ourselves to the set covering problem

(SC) min {cx|Ax > e, x, = 0 or 1, jeN}

3




introduced in section 1. (Here A is m X n). We will denote

N, = {jeN\aij =1}, ieM.

Consider the i-th term of a disjunction (3), i.e., xj =0, jeQi.
Clearly, every cover x that satisfies the i-th term of (3), also satisfies
the inequalities

T xj =l heM
JeN \Q
and hence, for any choice of indices h(i)eM, i=1,...,p, every cover that

satisfies (3), also satisfies the disjunction

p

A | b3 x> L,

i=1 Jeth\Qi
which is easily seen to imply (for integer x) the inequality Exj > 1, with
the summation taken over the union of the sets Nh(i)\Qi’ =1 s D

Combining this reasoning with Corollary 1.2 yields the following.
Theorem 2. Let Z; be an upper bound on the value of (SC), and let
u, s satisfy (5). If there exists a set of column indices S = {j(1),...,j(p)},

P # S S N, such that

(8) J-Essj >z - ue,

then for any set of p row indices h(i)eM, i=1,...,p, and any collection of

p subsets QiEN, i=1l,...,p, satisfying

(70, s 8 £ 8.5 jeN,
i\,_‘i@:Qi 3 J

every cover x such that ex < z _satisfies the inequality

U

(9 =, >1,
jew
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s S MNP e A G =

1

where

hei) Q) -

p

(10) W= U(N
i=1

Remark 2.1 The family of cuts (9) remains the same if the condition

QiCN in Theorem 2 is replaced by Q o L (SRR

iENh(i)’

Proof. From (10), the change does not affect the set W which defines
inequality (9).!

The inequalities (9) are valid cutting planes in the sense of being
satisfied by every cover better than & given one. Further, they are of the
set covering type. Since these properties are the same as those of the
Bellmore-Ratliff cuts [5] obtained by the use of involutory baces, we next
examine the relationship between the latter and our inequalities from
conditional bounds. First, we show that the Bellmore-Ratliff inequalities
are a subclass of the class of inequalities (9). Then we show by way of
example that the subclass in question is a proper one.

Theorem 3. The Bellmore-Ratliff inequalities [5] are a subclass of
the class defined in Theorem 2.

Proof. Let x be a prime cover, B an involutory basis associated
with X, and cj - cBaj the j~th reduced cost, where g is the m-vector
whose i-th component is cj(i)’ if the basic variable associated with row i
is (the structural variable) xj(i)’ and 0 if the basic variable associated
with row i is slack. (When B is an involutory basis, the reduced costs
are known to be of this form). Let the columns of B be indexed by I, and
denote F = [jeN]cj-cBaj<0}. The Bellmore-Ratliff cut associated with X and

B is then

(11 T X, = 1.
jeF
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To obtain this cut via our procedure, set S = IMN, S = {j(1),...,j(p1},
i.e., let S be the index set of the basic structural variables, and set u = 0,
s = c. Then u and s satisfy (5), and S satisfies (8) (with equality) for zU=c§.
Next let h(i) be the row index associated with basic variable xj(i)’

and set Qi = Nh(i)\F’ i=1l,...,p. It is easy to see that these sets Qi

satisfy (7). Substituting for Q, in (10) then yields
i

On the other hand, from the definition of F it follows that jeF implies

jeNh(i) for some iefl,...,p}, hence

cCo

Fg( N

\
h(1)/

i=1
and therefore W = F. Thus (11) is a special case of (9).!

Note that the cutting planes derived by Bowman and Starr [6] via a
vector partial ordering are a special case of the Bellmore-Ratliff
inequalities, hence they can also be obtained by our procedure.

Next we illustrate by an example the fact that the Bellmore-Ratliff
inequalities are a proper subclass of the class of inequalities (9), and
in some cases those inequalities (9) that cannot be derived by the Bellmore-

Ratliff procedure are considerably stronger than the ones that can.

Example 2. Consider the set covering problem whose costs cj and ‘
coefficient matrix A are shown in Table 2.

The 0-1 vector x whose support is {2,3,5,12,13,17} is a cover,

satisfying with equality all the inequalities except for 1 and 8, which
are oversatisfied. The Bellmore-Ratliff procedure generates cuts from the

involutory bases that can be associated with X, and it can obtain one cut from |

every such basis. The variables X4, X

4 and 65 can be basic only in rows




m

=13+
1 2 3 4 5 6 7 8 9 101112131415 16 17 18 19 20
&1 3113122353333 344455687
1 1 1 11 1
251 1 11 ¥y 1
3 1 1 1 £
4 1 1 1|
i 5 1 1 1 1 1
! 6 1 1 1 1 1
4 7 1 1 1 T |
4 8 ¢ '3 1
3 9 1 1 A G
] 10 1 1 1 1
11 1 1 1 11

Table 2.
.
3, 4 and 6 respectively. Since rows 1 and 8 are slack, x12 and X14 can be
basic only in rows 11 and 10 respectively. Finally, x,, can be basic in

any of the 4 rows 2, 5, 7, 9; and accordingly there are 4 involutory bases

that can be associated with X. We will denote them by B B, and B

g* 350 By 9’

The basis B

according as x 2

17 is basic in row 2, 5, 7 or 9 respectively.

(after row permutations) is shown in Table 3. All variables whose index

exceeds 20 are slacks.

2 3 % 12 13 17 25 37 9 21 ¢ ]
i T
4 1 '
1 |
11 1 I
10 1 |
2 1]
’_ P — -— - p— e N pu— — —— - aon
5 ll '1
7 1| -1
9 1 -1
1 e & -1
8 1 -3 I -1
{
1 Table 3.
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The 4 cutting planes that can be obtained by the Bellmore-Ratliff

procedure, depending on which basis is used, are

X + x, + xg + X0 + X5 + X16 + X8 + Xy0 = 1 ; from B2
x, + %, +xg + X0 + X1 * X9 >1 , from BS
R R TR Bl T Bl Th . N
X, + xg + %10 + X4 + X8 + %, >1 , from Bg.

On the other hand, using the conditional bound approach, we construct
(by inspection or a heuristic) the dual vector u = (0,1,1,1,1,1,2,0,1,2,2)

which, together with the associated reduced cost vector
a= (2,0,0,2,0,0,0,1,1,0,2,2,1,2,1.0,0,2,0.1),

satisfies the condition (5).
The cover x whose support is {2,3,5,12,13,17) yields 8,y = X = 14;
and the dual vector u yields the lower bound ue = 12.
Since z, - ue = 2, Q; = [jgN‘sj > 2} = {1,4,18), and thus (Remark 1.3)
= x

every cover better than X satisfies x k| B 0. Hence we replace N

1 18

by N\{1,4,18}. Further, to apply Corollary 1.4, we pick the column indices

j(1 = 12, j(2) = 13; for which (8) holds, since 12 - 313 =8 > z; - ue.

Next we pick the row indices h(1) = 8, h(2) = 5, and choose the sets Q = (12,13},
Q, = {9,11}, to obtain Moy ' he2y
W = {6,10,16,19}. In choosing the sets Q1 we make sure that (7) is satisfied,

= (6,19} and N = {10,16,19}, hence
and apart from that try to make each successive Nh(i)\Qi add to W as few

new elements as possible. We have thus obtained the cut

AN FPRE S A - |

6 10 16 19

which has only 4 positive coefficients, whereas each of the involutory

basis cuts has at least 6.




The above inequality cuts off X.

This is due to the way we chose the
column indices j(i) and the row indices h(i), i=1l,...,p, as will be shown
in the next section. If we do not care about cutting off a specified
cover, we can obtain inequalities which are "stronger' in the sense of
having fewer positive coefficients. Thus, for instance, if we choose

j(1) = 13, j(2) = 9, and h(1) = 8, h(2) = 5, we can generate the cut

+ x > 3

*17 19

(by setting Q1 = {12,13}, Q, * {9,11}); and for j(1) = 13, j(2) = 14,

h(1) = 8, h(2) = 4, we obtain the cut

Xy + X9 >1

(by choosing Q, = (12,13} and Q, = {14,20]).

4, Some Properties of Cuts from Conditional Bounds

The family of cuts defined by Theorem 2 is vast, and one is interested
of course in computationally cheap procedures for generating ''strong'' members
of this class. In this section we investigate some properties of the cuts
(9) that will be helpful toward that goal.

The first practical question that arises is whether condition (8) can
always be met, and how. Since s depends on u, it should not be surprising
that one answer to this question comes in terms of additional conditions on u.

Theorem 4. Let the vectors u and s satisfy (5), and let X be a cover

with support S(X). If

u(Ax-e) = 0,
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then (8) holds for S = S(X).

Proof. Consider the pair of dual linear programs.

L) min {cx|Ax > e, x. > 1, jeS(X), x, > 0, jeN\S(®)}

j j

and

(D max {ue + £ s |ua,  +s, = €5 jeN; u >0, s >0} .

jes 31 4
Clearly, x is a feasible solution to (L)), and (T,5) is a feasible

solution to (DI)' Further, X and (u,s) satisfy the complementary slackness

conditions T(AX-e) and (x,-1)s, = 0, jeS(X), x = 0, jeN\S(X); hence they

Yy %3

are optimal solutions to (Ll) and (Dl) respectively. Therefore
ue + T ;j = ¢X
jeS(X)
which together with z, < ¢X proves the statement.||

For any cover x, denote
i
T(x) = {ieM|a™x = 1}.

Then as an immediate consequence of Theorem 4, we have
Remark 4.1. Let X be a cover, and let (u,s) satisfy (5). If T also

satisfies
i,=0,% 1 eM\T (%)

then (8) holds for S = S(X).
Thus, if an upper bound z, and vectors u, s satisfying (5) are at hand,
but condition (8) does not hold, it can be made to hold by successively

setting to O components u, of u such that ie¢M\T(¥X). At worst all such

i




o

components may have to be set to 0; then (8) will hold.

Before turning to other characteristics of the cuts (9), we now
state a basic property of the set covering problem. Let the set covering

polytope P be the convex hull of all integer n-vectors satisfying Ax > e,

x>0, 1. e,

P = conv {xeR"|Ax > e, x >0, x, integer, jeN}.

i

We then have the following

Theorem 5. The inequality

(12) > X 2 1
JeN,

where i¢M, defines a facet of P if and only if there exists no keM such
c
that Nk Ni’ Nk # Ni‘
Proof. The "only if" part is obvious. To prove the "if'" part, we

b assume there is no k&M such that Nk = Ni’ Nk # Ni' and we exhibit n linearly

independent integer n-vectors that satisfy Ax > e, x > 0 and for which (1)
holds with equality.

Let ‘Ni‘ = p, and assume w.1.0.g. that N, is the set of the first p

i

indices in N. Let y = (1,...,1), chn-P, and let e, and fi be the unit

i

1 vector in RP and R"P respectively, whose i-th comporent is 1. Now consider

the p n-vectors (ei, y), i=1,...,p, and the n-p n-vectors (el, ye€. ),

i-p

i=p+1,...,n. Since there is no keM such that NkCNi,

nonnegative integer vectors satisfies Ax > e; and since each one of them

Nk#Ni, each of these

has a single 1 among its first p components, they all satisfy (12) with

equality. Further, the nxn matrix whose rows are these vectors is

X = (Ip b )
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where for k = p and k = n - p, Ik is the identity of order k, while Yk is
the kx(n - p) matrix whose entries are all equal to 1; and E is the (n - p)Xp
matrix whose first column consists of 1's, and whose remaining columns

consist of 0's. Now define the matrix

Using the fact that EYP = Yn-p’ it is easy to see that XZ = In’ i.e.;
Z = )(.1 and hence X is nonsingular. This proves that the n vectors
introduced above are linearly 1ndependent.“

In a cut-generating procedure it is important to make sure that no cut
is repeated. Next we give a necessary and sufficient condition for a cut
to be '"new." Let (SC) stand for the set covering problem amended with all
the cutting planes generated up to some point, and let
9 z X, > 1

jeW
be the next cut generated. We then say that the inequality (9) is new,
if there is no ieM such that N1 cw.

Remark 5.1. The inequality (9) is new if and only if N\W is the
support of a cover for (SC).

Proof. The cut (9) is new if and only if Nigﬁ, ViegM; hence if and
only if Nl\wiﬂ, VieM. But this condition holds if and only if N\W is the
support of some covcr.H

While the condition of Remark 5.1 is straightforward, it is easier to
embed in a cut generating procedure when paraphrased as follows.

Remark 5.1.a. The inequality (9) is new if and only if it cuts off

(is violated by) some cover of (SC).
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The next Theorem gives conditions on the column indices j(i) and
row indices h(i) used in generating inequality (9), to guarantee that the

inequality obtained cuts off a specified cover. We will denote

M, = {ieM\aij =1}, jeN.

Theorem 6. Let zU, u, v, S and Qi,1=1,...,p, be as in Theorem 2,

and let j(i)eQi, i=1,...,p. If X is a cover such that S € S(x) and

(13) h(1) TG, ok, ... .B,

(1)’

4 then the inequality (9) cuts off (is violated by) X.

4 Proof. Assume S € S(x) and (13) holds. From h(i)eMj(i) we have
. j(i)eNh(i), i=1,...,p; and since j(i)eSCS(X) implies X (1)" 1, while
b h(i)eT(X) implies ]S(Y)ﬂNh(i)\ =1, i=1,...,p, it follows that

SEM, 4y = 3083, sl .. ..p

Further, since j(i)eQi, i=1,...,p, we have

E . S(f)n(Nh(i)\Qi) — ﬂ, 1=1'-'°1p’

and hence S(X)(W = @, i.e., the inequality (9) cuts off i.“
Remark 6.1. Every inequality (9) for which the conditions of Theorem 6
are satisfied, defines a facet of

P* = conv {xcRn|Ax2e, Ll N TR

2 integer, jeN}.
jeW

i

Proof. Follows from Remark 5.1 and Theorem S.H
Theorems 2 and 6 provide rules for generating a sequence of valid

cutting planes that are all distinct, and furthermore, are all facets of

1§
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the current polytope P*, This latter property, however, does not imply L
that all inequalities generated this way are equally strong. Since all the
inequalities in question have coefficients equal to 0 or 1 and a right
hand side equal to 1, we will use the number of coefficients equal to 1l as
H a measure of their strength (the fewer the 1's, the stronger the inequality).
Note that some facets of the set covering polytope may be much weaker than

3 others, according to this criterion. Thus, for instance, all 5 inequalities

- represented by the rows of the matrix A in Table 4 define facets of the

2
fg set covering polytope corresponding to A, yet inequality 4, with only
b | two 1's, is much stronger than inequality 5, which has ten 1's.
1 1 1 1 1 1
N % .4 1 R
A=|1 1 1 1 1
4 1 1
) gt e (5T LI (T S, LR (0 |
1
“ Table &. )
Thus, although they all define facets of the current polytope P*,
the cutting planes obtainable via the rules of Theorem 6 are not all
1 equally desirable. The next section discusses a procedure for generating

conveniently strong members of the family.

t 5. Generating Cuts

The strength of an inequality (9), i.e., the size of che set W, !
depends on the integer p and the size of the sets Nh(i)\Qi’ L= LyeoosPs

of Theorem 6. To have p conveniently small, the procedure chooses the set ;

e e ST S R~ = —

i ol




g,

T —————

Choose h(i) such that

o

S = {j(i),...,j(p)}, corresponding to the p largest reduced costs sj,
jeS(X), where p is the smallest integer for which (8) is satisfied. Each
row index h(i), i = 1,...,p, is of course chosen from T(i)ﬂMj(i), as
prescribed by Theorem 6. Further, in order to have W as small as possible,

the sequence of row indices h(i) is chosen so as to make as small as

possible at each step ke{l,...,p} the set wk\wk-l’ where W = @ and

0

k
wk = U (N LY o k= Eoo.ap.

Since for any S satisfying (8), |S| = 1 implies (Remark 1.3) that
the variable xj such that S = {j} can be permanently set to 0, we assume
this has already been done for all such singleton sets, and hence

|s| > 2 for all S satisfying (8).

Let M and N be the row and column index sets of the current problem

(SC), let X be a prime cover for (SC), and denote, as before,
sGo= (Jen|=1), T(®= {ieM|alz=1).
Further, let u and s satisfy (5), and assume (8) holds for S = S+A {jeS(§)|3j>0}.

Cut-Generating Procedure

Step 0. Initialize W =9, S =S', z =ue, i = 1 and go to 1.

L i

Step 1. Define

ey T e Byx o 8T ONEE

je j(i)}' :

N \ew| = min N \QUW |
hiL) th(R)ﬂMj(i)l 5

alehs,

e S e PRR I T R - T AT R G T s 2 SR VRS TV
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(breaking ties arbitrarily), and set

WewU (Nh(i)\Q), z. —- 2z

+
- M R VUL,

If 23 > z;;, 80 to step 2. Otherwise, iet

7 { By T ey IR,
j

sj otherwise,

§ « S\ ],

set i ~ i+1, and go to 1.

Step 2. Add to the constraint set of (SC) the inequality

2l el
jew J

+
In at most |S | iterations, this procedure generates an inequality (9)

satisfied by every cover x such that cx < z, and violated by X. Indeed,

+
S (initialized as S ) is diminished at everv icteration by one element,
hence there are at most ‘S+| iterations. Further, since (8) holds for

+
S =8, after p < |S+| iterations, (8) holds for the current set S (i.e.,

z > zU), and we go to Step 2 to generate a cut (9).

Y

For the sets

QnNh(i)’ £l ... 5P j(i)eQi, and (7) is satisfied (by the definition

of Q and sj at every iteration). Finally, the choice of h(i) guarantees

(13). Thus all requirements of Theorem 6 are met.

A couple of minor improvements are at hand. Choosing the largest sj

to define j(i) at every iteration has the purpose of minimizing the size

of the set S in (8). But at the last iteration choosing the largest s

i

may not be indicated, if a smaller sj suffices to satisfy (8). Thus a




e -
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better rule for choosing j(i) in Step 1 is to set
v, = min {Tax 8 » @in {s.|s, > zy - zL}}
jes jes
and then choose as j(i) one of the indices jeS for which < = vy
Furthermore, whenever this index is not unique, i.e., |J| > 1, where
J = {jeS\sj > vi}, the choice of j(i) and h(i) can often be improved by

first setting Q = {jelej 2 vi}, next choosing h(i) so as to minimize

‘Nh\QLW‘ over all heT(x)M,., where

M. = U M,;
i : %
i ¥

and then choosing the unique index {j}=JﬂN as j(i).

h(i)

Example 3. Consider the set covering problem of example 2 (Table 2),

with c, = 3 replaced by c, = 1. Then the cover X whose support is

S(x) = {2,4,13,20} gives z, = cx = 14, and T(X)= M\{1}. The vector u of

U

example 2 yields the same reduced costs sj as in that example, except for Sy

which now is 0. The lower bound ue is 12, and since sj > 14 - 12 = 2 for

j =1, 18, we set x, = x,, = 0, and replace N by N\{1,18}. Condition (8)

1 18

holds for S = ST = (13,20}, since s , + s, > 2.

13 20

Step 0. W =0, 5 = (13,20}, 2z, = ue = 12.

Step 1. v, = min {1,2} = 1, J = {13,20}, Q = {(8,9,11,12,13,14,15,20},

1|

M. = M13UM = M\{3,5}. To choose h(l), we minimize \Nh\Ql over

J 20

her(E)nMJ = M\{1,3,5}, and find that the minimum is 1, attained for k = 4,8,9,

We arbitrarily choose h(1) = 4, and set W = NQ\Q = {3}, g = 12 + 1 = 13.

The s, remain unchanged except for j = 14,20, the new values for the latter

j




being sl& =Sy " 0. We set S = {13}, i=2, and go to

Step 1. v, = min {1,1} = 1, J = {13}, Q = {8,9,11,12,13,15},

MJ = M13 = {1,8,10}. To choose h(2), we minimize \Nth\ over

heT (R) MM, = {8,10}, and find h(2) = 8. We set W = {3]U(N8\Q) = {3,191},

z. = 13+ 1 = 14, and since z

>z , we go to
L =R g

L

Step 2. We add to (SC) the inequality

x>

5 19

6. A Class of Algorithms

The cutting planes discussed in this paper can best be used in a
framework that takes maximum advantage of their properties. To obtain
a cutting plane from conditional bounds, one needs a feasible solution
(u,s) to the dual of the linear program associated with (SC). Such a solu-
tion also provides a lower bound ue on the value of (SC). On the other
hand, the easiest way to make sure that the cuts that one generates are
all distinct, is to have each inequalitv cut off some cover satisfying
all the previously produced inequalities. Thus to obtain a sequence of
distinct cutting planes, one also needs a sequence of covers. Each cover x
in turn, provides an upper bound cx on the value of (SC).

The best approach then seems one that alternates between (¢)generating
a cover x for the current problem, and (B) generating a dual solution (u,s)
and using it to derive an inequality that cuts off x. In such a procedure,
the value of (SC) is bounded from above by the sequence of covers obtained

under (g): and bounded from below by the sequence of dual solutions produced

PINPPUE e i
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under (3). The rate of convergence of the algorithm is the rate at
which the gap z -7 between the two bounds decreases.

Since every inequality generated in the procedure cuts off at least
one new cover, and since the number of distinct covers is finite, the
procedure outlined above is finite, irrespective of the methods used to
generate the sequence of covers x and dual solutions (u,s). Its
efficiency on the other hand depends crucially on the efficiency of those
methods.

Several versions of the approacih outlined above were implemented and
thoroughly tested in a computational study summarized in the companion
paper [2]. The algorithm that emerged as a result of the testing uses
several different heuristics intermittently to generate prime covers, and
produces dual solutions (u,s) both by heuristics and by subgradient

optimization. When the decrease in the gap z -z slows down, the

L
algorithm branches, using either a disjunction of the type discussed in

this paper, or a dichotomy derived from other considerations, according

to some measure of comparative strength. The algorithm is particularly well
suited for low density problems, and its performance on set covering problems
taken from the literature compares favorably with earlier methods.

Randomly generated test problems with up to 200 constraints and 2000
variables have been successively run.

For details of the algorithm and results of the computational tests

the reader is referred to [2].
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